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Abstract— Robotic pouring is an important step in improving
the safety, productivity and repeatability in the biotechnology
industry and generally increasing the effectiveness of robotics
in human based environments. In this work we present a
method to autonomously dispense a precise amount of fluid
using only visual feedback without using precision pouring
instruments such as pipettes, syringes or pourers. We model
circular and rectangular pouring container geometries. We
prove that for square containers we can control the flow by
only observing the fluid height in the receiving beaker. We show
a systematic approach using a hybrid control scheme that is
robust to the initial amount of fluid in the pouring container and
inconsistent flow. Specifically we present (a) a model for pouring
(b) a model based algorithm to drive a robot arm (c) visual
feedback for regulating the pouring rate. We demonstrate this
using the Rethink Robotics Sawyer manipulator and mvBluefox
MLC202bc camera.

I. INTRODUCTION

One of the main goals in robotics is to assist in repetitive,
laborious, and dangerous tasks. Precise pouring of fluids can
easily fall under each of these categories, examples being
manipulation of hazardous biological fluids, molten metal in
the casting industry, or even the assembly of buffers and
solvents in wet lab research. In each of these examples a
common requirement is that a specified amount of fluid be
poured with precision to a desired amount.

To achieve these precise motions required for pouring,
researchers have used learning models to perform reinforce-
ment and imitation learning to pour [1], [2], [3]. While
effective, limitations of these methods are the number of
trials required to learn the pouring task, reliance on empir-
ical results rather than on analytical guarantees of system
performance, and inability to generalize learned model.

One approach to perform smooth pouring is to minimize
sloshing of the liquid while pouring a predetermined tra-
jectory. Some research proves to suppress sloshing while
pouring using a hybrid shape approach which consists of
proportional gain, notch and a low pass filter [4], [5], [6], [7].
In this approach, the control input consists of feed forward
expression based on the proposed model, and the hybrid
shape to mitigate sloshing during the pour [6], [7], [8]. Noda
and Terashima tried to overcome the requirement for the
need of an analytical inverse of the dynamical function by
using a numerical look up table for the desired height [9]
and corresponding input. In the above model based examples
[8], [9] load cells were used to provide real time feedback
on poured fluid mass.
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Fig. 1: Experimental setup using the Rethink Robotics
Sawyer manipulator to pour precise amounts of water into a
beaker using vision for feedback control.

Vision is also used for real time feedback by detecting
how much fluid is currently in the pouring container, or in
transit. Mottaghi et al. present a method using learning to
estimate the volume of containers and the amount of fluid
inside them using vision [10]. Yamaguchi et al. present a
method using stereo vision and optical flow to track fluids
being poured during flight between containers [11]. The most
recent approach in [12] is the state of the art in liquid
perception because it tracks the liquid while it is poured as
well as the amount in the container using a recurrent neural
network. Compared to our approach [12] is superior in the
perception but more simplistic in the control and without
providing any analytical proof.

Our proposed method extends previous work in that it is
analytically based and we provide a closed form expression
for the control input using a hybrid controller and feedback
linearization. We also show that we are able to detect the
height of the fluid using vision, and due to our pouring
container design specifications, we only need to observe
along with the angle of the pouring container, the height
or mass of the fluid in the receiving container and its
derivative. By using a minimum jerk trajectory for the fluid
height, we are able to ensure smooth motion for our end-
effector and fluid height [13]. The rest of the paper is
organized as follows, Section II-A describes the general
pouring model. Section II-B presents our specific system
design and justification. Section II-C describes our method of
visual feedback to detect the fluid height. Section III shows
our results and discussion for implementing this method on
the Rethink Robotics Sawyer manipulator shown in Figure 1.
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Fig. 2: The Pouring Problem: For a fluid poured from con-
tainer α to container β with specified geometric parameters,
the goal is to pour a precise amount of fluid using visual
or weight feedback based on an analytical model and closed
form control.

II. METHODOLOGY

A. General Pouring Model

We propose a simple model to characterize smooth flow
between two open containers. We assume as in [7] that the
fall time of the fluid between the containers is negligible.
Consider a pouring container α and receiving container β,
with respective volumes Vα, Vβ respectively as shown in
Figure 2. For container β, the height of fluid hβ and cross
sectional area Aβ(zβ) parameterized by the height in the
body fixed frame coordinate, together they define the volume

Vβ =

∫ hβ

0

Aβ(zβ)dzβ . (1)

For the pouring container α, the maximum volume of the
container is defined as Vα =

∫Hα
0

Aα(zα) as shown in Figure
2, where Hα is the height of the container, and Aα(zα) is
the cross sectional area parameterized by the body frame
coordinate. When container α is rotated by angle θ, there
will be a volume of the fluid above the pouring lip VL,α, and
volume below the pouring lip Vs,α, separated by a surface
area As,α(θ) as shown in Figure 2. The height of the fluid
above the lip is defined as hL,α, and, for small heights, the
volume is approximated as in [8], [9] by

VL,α ' hL,αAs,α(θ). (2)

The volume below the surface can be found by integrating
the cross sectional area from the base of the container to the
dividing surface As,α, which defines the volume Vs,α

Vs,α =

∫
Aα(zα)dzα. (3)

The dividing surface As,α is a function of the angle θ,
container geometry and volume of fluid below the surface
Vs,α. Assuming the only degree of freedom is θ, then
θ, its derivative ω = θ̇ or higher order derivatives must
be controlled to produce the desired flow rate and poured
volume.
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Fig. 3: Pouring geometry used to derive analytical model.

The flow rate between the two containers α and β is
defined as q[m

3

s ]. In relation to the respective volumes, the
flow rate is defined by

q = V̇β = −V̇α = −(V̇L,α + V̇s,α). (4)

By expanding this differentiation based on transient terms
for container α, the flow rate (4) becomes (5). Note that the
partial derivatives of As,α, Vs,α are required as they are not
explicitly a function of time

q = −ḣL,αAs,α − hL,α
∂As,α
∂θ

ω − ∂Vs,α
∂θ

ω

=

(
Aβ(hβ) + hβ

∂Aβ(hβ)

∂hβ

)
ḣβ . (5)

To express hL,α, we define the area of the pouring mouth
as AL = hL,αLL,α(hL,α), where LL,α(hL,α) is the line
of the opening of the mouth at varying heights (as shown
in Figure 3 where in this case it is a constant). We note
that the height hL,α is related to the flowrate by Bernoulli’s
principle v2

2 + gz + P
ρ = const. where v, z, P, ρ are the

fluid velocity, height, pressure and density respectively at a
particular point in the steady, streamline flow. We consider
Bernoulli’s principle acting on volume VL,α. The fluid at
the top surface of this volume has no velocity, whereas the
volume at the bottom (height hL,α below the surface) has a
velocity V =

√
2ghL,α. As flow rate is defined as q[m

3

s ] or
[m2 · ms ], we can integrate over the pouring area to obtain
the flowrate

q = AL(h)v(h) =

∫ hL,α

0

LL,α(h)
√

2ghdh. (6)

By differentiating this with respect to time, we can obtain
an expression for ḣL,α in terms of flow rate q, q̇. Given
these fundamental equations, we consider different container
designs to ensure effective state observation, system model
simplicity and ultimately control.

B. Specific Pouring Model Using Rectangular Container
Geometry

Design considerations for the pouring container α include
the pouring lip and container geometry. The terms that are



Fig. 4: We use the Rethink Robotics Sawyer manipulator
to precisely pour colored water into a beaker using visual
feedback from a mvBluefox MLC202bc camera.

directly related to these factors are the lip length LL,α(hL,α),
flow rate q(hL,α), dividing area As,α(θ), and volume below
the lip Vs,α(θ).

Considering three cases: a rectangular lip where the length
is constant, v-shaped lip that has an opening angle γ, and
circular lip shape, where the entire opening has a radius R,
the lip shape equations become

LL,α,rect(h) = LL,alpha (7)

LL,α,vshape(h) = 2h cos(
γ

2
) (8)

LL,α,circ(h) = 2
√
h(2R− h). (9)

The flow rate q for circular and rectangular lip geometries
are shown in (10), (11) and are found by integrating (6)

qrect =
2

3
LL,α

√
2gh

3
2

L,α (10)

qcirc = −
4
√
2g

15

(
128R5 − 120R3h2L,α

+20R2h3L,α + 30Rh4L,α − 9h5L,α
)
. (11)

Differentiating these flow rates with respect to time produces

q̇rect = LL,α
√
2gh

1
2

L,αḣL,α (12)

q̇circ =
−4√2g

15

((
−240R3hL,α + 60R2h2L,α

+120Rh3L,α − 45h4L,α
))
ḣ. (13)

Note that by substituting hL,α from (10) into (12) we can
express (12) as

ḣL,α =

(
2

3

) 1
3

L−
2
3 (2g)−

1
3 q−

1
3 q̇. (14)

For the dividing area As,α, we consider two cases: a square
and circular container. In both instances the cross sectional
area is constant in body frame zα. The dividing area As,α is
defined to consist of a major and minor axis a, b, where
rotation occurs about the minor axis b. In the case of a
circular container the area of an ellipse is πab, Hence the
respective areas are shown in (15), (16), where a′ is the
elongated axis as a function of the angle θ

As,α,circ = πa′b = πab sec(θ) (15)
As,α,rect = a′b = ab sec(θ), (16)

(a) (b)

Fig. 5: Robustness of our vision method to sloshing in fast
trajectories, tracking and foreground images. The height is
estimated as minimum of purple and white rings (K-means
cluster centers), in Figure 5a estimated height is the white
ring.

differentiation with respect to time produces

Ȧs,α,circ = πab tan(θ) sec(θ)ω (17)

Ȧs,α,rect = ab tan(θ) sec(θ)ω. (18)

The volume of fluid below the dividing surface Vs,α is shown
in (19) for rectangular geometry. Note that while other ge-
ometries can be found, this volume is straight forward. Using
the geometry notation shown in Figure 3, with container
width Wα, length lα, total height Hα

Vs,α,rect =

∫ lα

0

∫ H(y)

0

∫ Wα

0

dxdzdy

=

∫ l1

0

WαH(y)dy =

∫ l1

0

Wα(Hb − y tan(θ))dy

=WαHαlα −
l2α
2
Wα tan(θ). (19)

The derivative with respect to time produces

V̇s,α,rect = −
l2αWα

2
sec2(θ)ω. (20)

Given these parameterizations, we will now show that
the design configuration in Figure 3 allows for a concise
representation of the dynamical system in (5) in Proposition
(1).

Proposition 1: By using an open, rectangular pouring
container α as shown in Figure 3, and container β with
constant cross sectional area Aβ , we can represent (5) in
terms of only transient variables hβ , ḣβ , θ, ω.

Proof: Using equations (7), (10), (12), (14), (16), (18),



(20) assuming constant Aβ , (5) becomes

q = −
((

2

3

) 1
3

L
− 2

3

L,α(2g)
− 1

3 q−
1
3 q̇

)
(Wαlα sec(θ))

−
((

3

2

) 2
3

L
− 2

3

L,α(2g)
− 1

3 q
2
3

)
(Wαlαtan(θ) sec(θ)ω)

+
l2αWα

2
sec2(θ)ω. (21)

Solving for q̇ produces Equation (22)

q̇ = −3 1
3L

2
3

L,αg
1
3Wαlα sec(θ)q

4
3

− 3

2
tan(θ)qω

+

(
3

8

) 1
3

lα sec(θ)L
2
3

L,αg
1
3 q

1
3ω, (22)

using the relation in (23) we obtain the relation between q̇
and ḧβ

q̇ = Aβḧβ . (23)

Substituting Equation (23) and q = Aβḣβ into Equation
(21) produces Equation (24) whose transient terms are only
hβ , ḣβ , θ, ω.

ḧβ = −3 1
3L

2
3

L,αg
1
3Wαlα sec(θ)A

1
3

β ḣ
4
3

β

− 3

2
tan(θ)ḣβω

+

(
3

8

) 1
3

lα sec(θ)L
2
3

L,αg
1
3A

−2
3

β ḣ
1
3

βω (24)

We define Q1(θ), Q2(θ), Q3(θ)

Q1(θ) = −3
1
3L

2
3

L,αg
1
3Wαlα sec(θ) (25)

Q2(θ) = −
3

2
tan(θ) (26)

Q3(θ) =

(
3

8

) 1
3

lαsec(θ)L
2
3

L,αg
1
3 , (27)

which simplifies (24) to

ḧβ = Q1(θ)A
1
3

β ḣ
4
3

β +
(
Q2(θ)ḣβ +Q3(θ)A

− 2
3

β ḣ
1
3

β

)
ω. (28)

With these design parameters we have derived a component
of the system dynamics, we now define the region on which
it is controllable and the hybrid controller used.

Theorem 1: For a experimental setup defined in Proposi-
tion 1, with system states

[
x1 x2 x3

]T
=
[
hβ ḣβ θ

]T
and input u = ω, there exists a hybrid control input that
allows for control of the system in the domain D : x3 ∈
(−π2 , π2 ) for states ~x0 starting in D.

Proof: The full system dynamics based on (28) isẋ1ẋ2
ẋ3

 =

 |x2|
Q1(x3)A

1
3x

4
3
2

0

+
 0

Q2(x3)x2 +Q3(x3)A
− 2

3x
1
3
2

1

u,
(29)

(a) (b)

Fig. 6: Using background subtraction, Sobel gradient detec-
tion and K-means clustering (Figure 6a) we are able to track
the top of the fluid for feedback control. In Figure 6b the
goal was to pour 100ml.

which takes the general form ẋ = f(x)+g(x)u. To determine
the region on which this is feedback linearizable we must
determine the conditions of full rank for the matrix M
defined in (30), where adfg(x) represents the adjoint [f, g]
(lie bracket). And is also feedback linearizable if the span
M ’s vectors are involutive

M =
[
g(x) adfg(x) ad2fg(x)

]
. (30)

The matrix M has full rank when x2 6= 0, meaning the height
must be changing. Also we can see by inspection that g(x)
is only left invertible when x3 6= −π2 or x3 6= π

2 . Hence we
propose the following hybrid controller

u =


g(x)†(τ − f(x)) x2 6= 0 and x3 ∈ (−π2 , π2 )
sgn(x3)δω x2 = 0 and x3 ∈ (−π2 , π2 )
0 x3 6∈ (−π2 , π2 ),

(31)

where the domain conditions here serve as hybrid control
guard and reset function constraints, and these functions are
an identity map. Using feedback linearization the system
reduces to a second order ordinary differential equation, and
solving for the desired state x1 will exponentially approach
the desired point also in D for positive proportional and
derivative gains Kp,Kd. We define the term τ to be this
input, and have it consist of a feedback and feed forward
term prescribed by the desired trajectory of x1(t)

τ = ẍ1,des +Kp(x1,des − x1) +Kd(ẋ1,des − ẋ1). (32)

The desired trajectory for the system is a minimum jerk
trajectory for the state x1 which defines ẍ1,des, ẋ1,des, x1,des
where ẍ1,des is the feed forward term. We define a smooth,
sigmoid trajectory for the fluid height by using a 5th order
polynomial. Such a polynomial with specified end points
characterizes a minimum jerk trajectory, and inherently
minimizes the change in accelerations while respecting the
boundary constraints. The specified endpoints are the initial
height and final height both with zero velocity and acceler-
ation. These boundary constraints fully define the trajectory
in closed form [13]. Therefore with (31), (32) we can track
the specified trajectory in domain D.
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Fig. 7: We verify our model using an ODE solver in Figure
7a, we then perform this same trajectory on the real system
shown in Figures 7b, 7c.

It is noted in [14] that motions that minimize jerk are
also effective in suppressing vibrations in a mechanical
transfer system. Hence, a minimum jerk trajectory is an
adequate candidate to achieve smooth pouring, which is a
necessary consideration for the steady flow assumption of
the Bernoulli equation. However, it is important to note that
our method does not require that the flow remain steady, as
we use a hybrid controller to handle instances when flow is
interrupted. But the minimum jerk trajectory produces long

periods of steady flow as shown in experiments. It must
also be noted that a minimum jerk trajectory alone does not
ensure there will be no sloshing, and in the event of very
aggressive pours it would be advantageous to compensate.

In practice, the dynamics of the fluid (and sloshing) can be
modeled using the Navier-Stokes equations, but the motion
of the fluid as a whole in the container can be approximated
with a analogous (spherical) pendulum model [15], [16].
The limitation of existing methods is that it is assumed the
natural frequency (which is dependent on the current volume
and container shape) of the fluid remains constant, but in a
pouring scenario the frequency fluctuates when the volume of
liquid changes. In the cases where the fluid volume remains
constant, input shapers as shown in [15] or the hybrid
shape approach (utilizing notch filters for matching the fluid
natural frequencies with the notch resonance frequencies)
as shown in [6], can be used to minimize sloshing during
quick motions. So in the case of aggressive pouring, an
input shaper, particularly zero vibration (ZD) shaper which
uses two impulse inputs with delay between them which
is a function of the natural frequency and dampening ratio
(volume specific) can be used to mitigate sloshing. A study
of these input shapers and their convolutions to minimize
sloshing is studied in depth for a square container in [17]
and hence may be useful in very aggressive trajectories where
either the natural frequency modes can be approximated as
constant, or updated based on container pose and current
volume, with the initial applied angular accelerations (or
jerks) used to model an impulse input. In this work, we
examine pours whose sloshing is sufficiently suppressed by
the choice of minimum jerk trajectories.

C. Visual Feedback

We perform visual feedback on the height of the fluid in
the receiving beaker by tracking the top of the fluid. Using
a fiducial, we locate the beaker in the field of view. After
locating, we then utilize the OpenCV background subtracter
which is a Gaussian mixture-based background/foreground
segmentation algorithm [18]. Once the foreground is ob-
tained, we then use a Sobel operator to find the gradient in
the image. We then perform K-means clustering on the given
gradient to segment the pixels under the tag into at most two
clusters a) those for falling water b) those for rising water
as shown in Figure 5 and 6. By using the cluster which is
always lowest we increase the probability of tracking the top
of the fluid, even in extreme cases of rigorous sloshing which
occurs in fast pours, for example Figure 5.

III. RESULTS AND DISCUSSION

In our experimental setup shown in Figure 4, we used
the Rethink Robotics Sawyer manipulator to pour dyed
water into a beaker. We performed visual feedback using
a mvBluefox MLC202bc camera and verified the reported
volume with a DYMO Digital Postal Scale M25. We used
Apriltag fiducials developed by Ed Olson to locate the beaker
in the image frame [19]. The Sawyer robot runs at 100Hz,
we ran the camera at 12Hz, the scale runs at 5Hz. While
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ṁh 100 ml

scale 100 ml
mh 120 ml
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Fig. 8: Representative experimental trials of pouring. The
trials are for pouring 80, 100, and 120ml, over three different
time intervals.

the camera rate could be increased, we did not observe
significant improvement in performance.

We demonstrate our detection method is robust to sloshing
which occurs during fast trajectories as shown in Figure 5.
The detection method is also robust to instances when the
incoming fluid crosses the region of interest Figure 6a. To
achieve these, we track the fluid directly under the tag, and
only from the current estimate of the height to a threshold
distance above that point. This threshold distance moves with
the estimated height (shown as the green line in Figures 5a,

6a, 6b). The red line in these images indicates the goal height.
We show the estimated height at the indicated desired height
in Figure 6b.

While our vision height estimates are in cm, given the
area of the beaker we convert this to an expected volume
in ml. In the following plots, we will reference this mass
height as mh and it is the computed ml volume from a given
height, which allows us to represent the expected height
and scale ground truth in same units. We verify our model
using an ode solver shown in Figure 7a, then perform this
same trajectory on the actual system shown in Figures 7b,
7c. In Figure 8, we pour 80, 100, 120ml each with 8, 10,
12s trajectories. It can be noted that with longer trajectories
and larger volumes the accuracy increases. In Figure 9a,
we present 50 trials of 100ml pours with 10s trajectories.
Contributions to variance include the fact that the pouring
container did not always contain the same initial amount of
fluid, hence the hybrid controller provides a constant positive
velocity until pouring begins, then the trajectory is initialized
at the onset of pouring.

This demonstrates the robustness of our hybrid control to
the amount of fluid in the pouring container. It can also be
seen that there are points where the pouring height levels off.
This is due to the fact that during some pours, there were
bubbles forming on the side of the glass, which causes the
vision algorithm to report a higher than actual height. When
this occurred, the system would halt until either the bubbles
popped and it continued, or until the trajectory indicated a
higher height was required than that estimated. In either event
the system recovers and pours the desired amount with the
reported variance. Figure 9b shows the error between the
visual volume estimation and the reported scale. It can be
noted that across all 50 trials there is a consistent peak in the
difference at the beginning of the pours. We attribute this to
the fact that because we keep the camera at a constant height,
when the fluid level is observed from above the surface of
the fluid can offset the reported height, but as the level of the
fluid approaches the height of the camera, the reported value
increases in accuracy. While backing the camera away from
the setup would reduce this disparity, it would also serve to
reduce resolution. A video demonstrating this method and
the results can be found on Youtube: “Precise Dispensing of
Liquids Using Visual Feedback (GRASP Lab UPenn)”.

IV. CONCLUSIONS

In this work, we present a hybrid controller capable of
precision pouring using visual feedback. Our fluid height
detection algorithm performs online background subtraction
to obtain the foreground, then tracking the region of the
image under the Apriltag we perform K-means clustering
with two clusters to distinguish between fluid entering the
beaker and the rising height of the fluid. We show that our
detection algorithm is robust to sloshing in the receiving
beaker. Our controller is robust to the initial amount of fluid
in the pouring container. Our controller is also robust to halts
in fluid flow which occur due to errors in estimation caused
by sloshing or bubbles. In these instances the controller relies
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Fig. 9: Figure 9a 50 Trials pouring 100ml for 10s trajectories. Black line is average, shaded region is 1st standard deviation.
Figure 9b average and standard deviation between scale and vision report of height. Consistent dip is due to detection of
the top of the fluid at the beginning of the pour from camera perspective registering as higher heights.

on its hybrid nature to re-initiate flow to pour the precise
amount. Future work includes developing an adaptive hybrid
controller capable of being agnostic to container geometries
given the general flowrate (5). Another extension would be
to consider using a moving camera for tracking the height
of the fluid to ensure the camera is always level with the
detected fluid height, which is a technique used by humans
to pour exact amounts.
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